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o Finding patterns
@ Notation

o Closed form
e Recursive form
e Converting between them

@ Summations
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Sequences: Finding patterns

What number comes next?
e1,23,4,5,
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Sequences: Finding patterns

What number comes next?

@ 1,2,3,45,6

e 2,6,10,14,18, 22

e 1,2,4,8,16,32
1,3,6,10,15, 21
1,2,6,24,120,720
1,1,2,3,5,8,13,21
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Discovering the pattern

Each term might be related to previous terms

Each term might depend on its position number (1st, 2nd,
3rd,...)

“Well-known” sequences (even numbers, odd numbers)

Some (or all) of the above
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2,4,6,8,10,...

Can we relate a term to previous terms?

@ Second term is 2 more than first term.
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2,4,6,8,10,...

Can we relate a term to previous terms?
@ Second term is 2 more than first term.

@ Third term is 2 more than second term.

@ Any given term is 2 more than previous term.
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2,4,6,8,10,...

Can we describe each term by its position in the sequence?

@ Term at position 1 is 2.
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2,4,6,8,10,...

Can we describe each term by its position in the sequence?
@ Term at position 1 is 2.
e Term at position 2 is 4.

@ Term at position 3 is 6.

@ Term at position n is 2n.
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Mathematical notation

o Write term in a sequence as a lower case letter, followed
by a subscript denoting position number of the term (e.g.,
ai, b7! Zk)-

@ For the sequence 2, 4,6, 8, 10, ...:

@ a; =
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Mathematical notation

o Write term in a sequence as a lower case letter, followed
by a subscript denoting position number of the term (e.g.,
ap, by, Zk)-

@ For the sequence 2, 4,6, 8, 10, ...:

e a;=2.
e ay=24.
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Mathematical notation

o Write term in a sequence as a lower case letter, followed
by a subscript denoting position number of the term (e.g.,
ai, b7! Zk)-

@ For the sequence 2, 4,6, 8, 10, ...:

e a; =2.
@ ay = 4
e a, is nth term in the sequence.

e Whatis a3?
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Mathematical notation

o Write term in a sequence as a lower case letter, followed
by a subscript denoting position number of the term (e.g.,
ap, by, Zk)-

@ For the sequence 2, 4,6, 8, 10, ...:

@ a; = 2.
@ ay = 4,
e a, is nth term in the sequence.

e Whatis a3? 6

Arthur G. Werschulz 7/32



Mathematical notation

o Write term in a sequence as a lower case letter, followed
by a subscript denoting position number of the term (e.g.,
ap, by, Zk)-

@ For the sequence 2, 4,6, 8, 10, ...:

@ a; = 2.
@ ay = 4,
e a, is nth term in the sequence.

e Whatis a3? 6

o What is ag?
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Mathematical notation

o Write term in a sequence as a lower case letter, followed
by a subscript denoting position number of the term (e.g.,
ap, by, Zk)-
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@ a; = 2.
@ ay = 4,
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Mathematical notation
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Mathematical notation

o Write term in a sequence as a lower case letter, followed
by a subscript denoting position number of the term (e.g.,
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Mathematical notation

o Write term in a sequence as a lower case letter, followed
by a subscript denoting position number of the term (e.g.,

ai, b7! Zk)-
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Mathematical notation

o Write term in a sequence as a lower case letter, followed
by a subscript denoting position number of the term (e.g.,

ai, b7! Zk)-
@ For the sequence 2, 4,6, 8, 10, ...:
e a;=2.
@ ay = 4
e a, is nth term in the sequence.

Whatis a3? 6

What is ag? 10

Whatis ag? 12

What is a, if n =57 10
Whatis a, 9 if n=5?12

Arthur G. Werschulz 7/32



Recursive formula

@ Recursive formula for a sequence: each term is described
in relation to previous term(s). For example:

ap =2an1
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in relation to previous term(s). For example:

ap =2an1

So
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Recursive formula

@ Recursive formula for a sequence: each term is described
in relation to previous term(s). For example:

ap =2an1

So
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Recursive formula

@ Recursive formula for a sequence: each term is described
in relation to previous term(s). For example:

ap =2an1

So
33:232 :2(231) :481 :4(2a0)
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Recursive formula

@ Recursive formula for a sequence: each term is described
in relation to previous term(s). For example:

ap =2an1

So
33:232 :2(231) =4a; :4'(230):830
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Recursive formula

@ Recursive formula for a sequence: each term is described
in relation to previous term(s). For example:

ap =2an1

So
33:232 :2(231) =4a; :4'(230):830

=8-(2a1)
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Recursive formula

@ Recursive formula for a sequence: each term is described
in relation to previous term(s). For example:

ap =2an1

So
33:232 :2(231) =4a; :4'(230):830

:8'(23_1) = 163_1 =...
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Recursive formula

@ Recursive formula for a sequence: each term is described
in relation to previous term(s). For example:

ap =2an1

So
33:232 :2(231) =4a; :4'(230):830

:8'(23_1) = 163_1 =...

@ Problem: Need a starting point (initial condition) such as

31:1
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Recursive formula

@ Recursive formula for a sequence: each term is described
in relation to previous term(s). For example:

ap =2an1

So
33:232 :2(231) =4a; :4'(230):830

:8'(23_1) = 163_1 =...

@ Problem: Need a starting point (initial condition) such as

31:1

@ So let’s try
a, =2an,_1 forn>2

a;=1
o Example:
az=2a,=2-(2a;)=4a;,=4-1=4



Fibonacci sequence

e 1,1,2,3,5,8,13,...
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Fibonacci sequence

e 1,1,2,3,5,8,13,...

@ Recursive formula:

ap=a,_1+ap_> forn>3
62:1
ag =1
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Fibonacci sequence

e 1,1,2,3,5,8,13,...

@ Recursive formula:

ap=a,_1+ap_> forn>3
62:1
ag =1

e What's ajg? Top-down solution:

aig — a9+a8
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Fibonacci sequence

e 1,1,2,3,5,8,13,...

@ Recursive formula:

ap=a,_1+ap_> forn>3
62:1
ag =1

e What's ajg? Top-down solution:

ajo = ag +ag = (ag +ay) +(az + as)

Arthur G. Werschulz 9/32



Fibonacci sequence
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ag =1
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Fibonacci sequence

e 1,1,2,3,5,8,13,...

@ Recursive formula:

ap=a,_1+ap_> forn>3
62:1
ag =1

e What's a;? Top-down solution:
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ap=a,_1+ap_> forn>3
62:1
ag =1

e What's a;? Top-down solution:
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Too hard!
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62:1
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e What's a;? Top-down solution:
ajp=ag+ag=(ag+ay)+(ay+ag)=ag+2a;+ag...

Too hard!

o Better way? Work bottom-up via a grid.
n|1 2 3 4586 7 8 910
an ‘ 1

Arthur G. Werschulz 9/32
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e What's a;? Top-down solution:
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Fibonacci sequence

e 1,1,2,3,5,8,13,...

@ Recursive formula:

ap=a,_1+ap_> forn>3
62:1
ag =1

e What's a;? Top-down solution:
ajp=ag+ag=(ag+ay)+(ay+ag)=ag+2a;+ag...

Too hard!

o Better way? Work bottom-up via a grid.
n|1 2 3 4586 7 8 910
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Fibonacci sequence

e 1,1,2,3,5,8,13,...

@ Recursive formula:

ap=a,_1+ap_> forn>3
62:1
ag =1

e What's a;? Top-down solution:
ajp=ag+ag=(ag+ay)+(ay+ag)=ag+2a;+ag...

Too hard!

o Better way? Work bottom-up via a grid.
n|1 2 3 4586 7 8 910
a, |1 1 2 3
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Fibonacci sequence

e 1,1,2,3,5,8,13,...

@ Recursive formula:

ap=a,_1+ap_> forn>3
62:1
ag =1

e What's a;? Top-down solution:
ajp=ag+ag=(ag+ay)+(ay+ag)=ag+2a;+ag...

Too hard!

o Better way? Work bottom-up via a grid.
n|1 2 3 4586 7 8 910
a, |1 1 2 3 5
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Fibonacci sequence

e 1,1,2,3,5,8,13,...

@ Recursive formula:

ap=a,_1+ap_> forn>3
62:1
ag =1

e What's a;? Top-down solution:
ajp=ag+ag=(ag+ay)+(ay+ag)=ag+2a;+ag...

Too hard!

o Better way? Work bottom-up via a grid.
n|1 2 3 4586 7 8 910
a, |1 1 2 3 5 8
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Fibonacci sequence

e 1,1,2,3,5,8,13,...

@ Recursive formula:

ap=a,_1+ap_> forn>3
62:1
ag =1

e What's a;? Top-down solution:
ajp=ag+ag=(ag+ay)+(ay+ag)=ag+2a;+ag...

Too hard!

o Better way? Work bottom-up via a grid.
n|1 2 3 4586 7 8 910
a, |1 1 2 3 5 8 13
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Fibonacci sequence

e 1,1,2,3,5,8,13,...

@ Recursive formula:

ap=a,_1+ap_> forn>3
62:1
ag =1

e What's a;? Top-down solution:
ajp=ag+ag=(ag+ay)+(ay+ag)=ag+2a;+ag...

Too hard!

o Better way? Work bottom-up via a grid.
n|1 2 3 4586 7 8 910
a, |1 1 2 3 5 8 13 21
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Fibonacci sequence

e 1,1,2,3,5,8,13,...

@ Recursive formula:

ap=a,_1+ap_> forn>3
62:1
ag =1

e What's a;? Top-down solution:
ajp=ag+ag=(ag+ay)+(ay+ag)=ag+2a;+ag...

Too hard!

o Better way? Work bottom-up via a grid.
n|1 2 3 4586 7 8 910
a, |1 1 2 3 5 8 13 21 34
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Fibonacci sequence

e 1,1,2,3,5,8,13,...

@ Recursive formula:

ap=a,_1+ap_> forn>3
62:1
ag =1

e What's a;? Top-down solution:
ajp=ag+ag=(ag+ay)+(ay+ag)=ag+2a;+ag...

Too hard!

o Better way? Work bottom-up via a grid.
n|1 2 3 4586 7 8 910
a, |1 1 2 3 5 8 13 21 34 55
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Recursion

@ Recursive formula corresponds to “recursive function” in a
programming language.
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@ Recursive formula corresponds to “recursive function” in a
programming language.

@ Fibonacci formula

ap=an_1+ap_> forn>3
32:1
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Recursion

@ Recursive formula corresponds to “recursive function” in a
programming language.

@ Fibonacci formula

ap=an_1+ap_> forn>3
32:1
ag =1

@ Recursive function
def fib(n):
if n==1 or n==2:
return 1
else:
return fib(n-1) + fib(n-2)
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Exercise: Find recursive formula

°© 2,4,6,8,10,...
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Exercise: Find recursive formula
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a,=ap1+2 forn>2
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°© 2,4,6,8,10,...

a,=ap1+2 forn>2
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Exercise: Find recursive formula

°© 2,4,6,8,10,...

a,=ap1+2 forn>2

31:2

e 1,3,6,10,15,...
a,=as_1+n forn>2
a) =
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Exercise: Find recursive formula

°© 2,4,6,8,10,...

a,=ap1+2 forn>2

31:2

e 1,3,6,10,15,...
a,=as_1+n forn>2
61:1

@ 2,2,4,6,10,16,...
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Exercise: Find recursive formula

°© 2,4,6,8,10,...
a,=ap1+2 forn>2
31:2

e 1,3,6,10,15,...
a,=ap_1+n forn>2
a) =

@ 2,2,4,6,10,16,...

ap=ap_1+ap_> forn>3
32:2
ay =2
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Finding a closed formula

@ Write each term in relation to its position
e Example: 2,4,6,8,10,...
@ a; = 2=
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@ Write each term in relation to its position
e Example: 2,4,6,8,10,...
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@ apy = 4=

Arthur G. Werschulz 12/32



Finding a closed formula

@ Write each term in relation to its position
e Example: 2,4,6,8,10,...

°oa;=2=2-1
0o ay=4=2.2
o a3=6=
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Finding a closed formula

@ Write each term in relation to its position
e Example: 2,4,6,8,10,...

e a1 =2=2-1
e ar=4=2-2
o a3:6:2-3
o More generally, a, =
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Finding a closed formula

@ Write each term in relation to its position
e Example: 2,4,6,8,10,...

e a;=2=2-1
e a,=4=2-2
o a3:6:2-3
e More generally, a,, = 2n.
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Find the closed formulas

©1,3,57,9,...
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Find the closed formulas

1,35709,..a,=2n-1
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Find the closed formulas
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Find the closed formulas

1,35709,..a,=2n-1
@ 3,6,9,12,15,...b,=3n
@ 8,13,18,23,28,...c,=5n+3
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Find the closed formulas

1,3,57,9,...a,=2n-1
3,6,9,12,15,...b, =3n
8,13,18,23,28,...c,=5n+3
3,9,27,81, 243, ...
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Find the closed formulas

1,3,57,9,...a,=2n-1
3,6,9,12,15,...b, =3n
8,13,18,23,28,...c,=5n+3
3,9,27,81,243,...d,=3"
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Recursive formulas vs. closed formulas

@ Recursive formula

e It's often easier to find a recursive formula for a given
sequence.
e It's often harder to evaluate a given term.
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Recursive formulas vs. closed formulas

@ Recursive formula
e It's often easier to find a recursive formula for a given
sequence.
e It's often harder to evaluate a given term.
o Closed formula
e It's often harder to find a closed formula for a given
sequence.
e It's often easier to evaluate a given term.
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Closed formula = recursive formula

@ Write out a few terms.

@ See if you can figure out how a given term relates to
previous terms.

e Example: r, =3n + 4.
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Closed formula = recursive formula

@ Write out a few terms.

@ See if you can figure out how a given term relates to
previous terms.

e Example: r, =3n + 4.

n|l1 2 3 4 5
rm|7 10 13 16 19
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Closed formula = recursive formula

@ Write out a few terms.

@ See if you can figure out how a given term relates to
previous terms.

e Example: r, =3n + 4.

n|l1 2 3 4 5
rm|7 10 13 16 19

We find
rp="rn_1+3 forn>2

r1:7

Arthur G. Werschulz 15/32



Closed formula = recursive formula

Can also use algebraic manipulation. Let’s try
rn=3n+4

again.
@ Initial condition is easiest—substitute n = 1 into closed
form:
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Closed formula = recursive formula

Can also use algebraic manipulation. Let’s try
rn=3n+4

again.
@ Initial condition is easiest—substitute n = 1 into closed
form:
rn=3-1+4=7

@ Recursive formula: Try to describe r,, in terms of r,_1:

r,=3n+4
rhe1=3(n-1)+4=3n-3+4=3n+1
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Closed formula = recursive formula

Can also use algebraic manipulation. Let’s try
rn=3n+4

again.
@ Initial condition is easiest—substitute n = 1 into closed
form:
rn=3-1+4=7

@ Recursive formula: Try to describe r,, in terms of r,_1:

r,=3n+4
rno1=3(n-1)+4=3n-34+4=3n+1
So
rh—rno1=03Bn+4)-(3n+1)=3,
i.e.,

rp="rn_1+3

Arthur G. Werschulz 16/32
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s,=2"-2

@ Initial condition:
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Another example

s,=2"-2

e Initial condition: s; =21 -2 =0.
@ Recursive formula: We have
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and
Sp1=2""1-2
So
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Another example
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Another example

s,=2"-2

e Initial condition: s; =21 -2 =0.

@ Recursive formula: We have
s, =2"-2

and
s,y =2""1-2

So
sp,=2"-2=2.2""1_2=2.2""1_44>
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Another example

s,=2"-2

e Initial condition: s; =21 -2 =0.

@ Recursive formula: We have
s, =2"-2

and
s,y =2""1-2

So
sp,=2"-2=2.2""1_2=2.2""1_44>

=2.(2"1-2)+2
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Another example

s,=2"-2

e Initial condition: s; =21 -2 =0.

@ Recursive formula: We have
s, =2"-2
and
s,y =2""1-2

So
sp,=2"-2=2.2""1_2=2.2""1_44>

=2.(2"1-2)+2
:an_1+2

Arthur G. Werschulz 17/32



Exercise

Find the recursive formulas for the following sequences:
@ a,=2n+7
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Exercise

Find the recursive formulas for the following sequences:
@ a,=2n+7
e a;=9
e a,=ay_1+2forn>2.
e b,=2"-1

Arthur G. Werschulz 18/32



Exercise

Find the recursive formulas for the following sequences:
@ a,=2n+7
@ a) = 9
e a,=ay_1+2forn>2.
e b,=2"-1
o by =1
e b,=2b,_1+1forn>2.

Arthur G. Werschulz 18/32



Summations

Summing the terms in a sequence: important enough to have
its own notation (“sigma notation”):
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Summations

Summing the terms in a sequence: important enough to have
its own notation (“sigma notation”):

n
Zai =ajtax+--+a
i=1
Parts of speech?
e Large ¥: “summation”

@ i =1 at bottom: We want to start summation at term #1 of
the sequence.

@ n at the top: We want to stop summation at the nth term
of the sequence

@ Portion to the right of the X7 ;: Closed form of sequence
we want to sum.

Arthur G. Werschulz 19/32



Examples of Y -notation:

) (Bi+7)

Il
—
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Examples of Y -notation:
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+(3-5+7)
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Examples of Y -notation:

5
Y Gi+7)=(314+7)+(3:2+7)+(3:3+7)+(3-4+7)
i=1
+(3-5+7)
—10+13+16+19+ 22 =80

6
Y (7-2)=(22-2)+ (3 -2) + (42~ 2) + (52~ 2) + (6~ 2)

=2+7+14+23+34=80

Note: Parentheses are important!

5
Z3i+7:(3-1—|—3-2+3-3+3-4+3-5)+7:52
i=1

Arthur G. Werschulz 20/32



Converting a sum into > -notation

3+7+11415+419
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Converting a sum into > -notation

3+74+114+15+19=

5
(4i - 1)

i=1
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Converting a sum into > -notation

3474+114+15+19= Z (4i -
=1

5
Y
j=1

O0+3+8+15+24
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Converting a sum into > -notation

347+11+15+419=) (4i-

i=1
5
Z(4J -1)

j=1

(6]

0+3+8+15+24=) (k?-1)
k=1

Arthur G. Werschulz 21/32



Mathematical induction

Suppose you have a statement P(n) about the positive
integer n. How would you prove that P(n) is true for alln € Z*?
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Mathematical induction

Suppose you have a statement P(n) about the positive
integer n. How would you prove that P(n) is true for alln € Z*?

Prove P(1)
Prove P(2)
Prove P(3)
Prove P(4)

Prove P(100000000)

But this doesn’t guarantee that P(n) is true for all n; maybe
P(100000001) is false!!

Arthur G. Werschulz 22/32



Example: Sum of the first n positive integers

Want to show that
ZJ = % n + 1 V ne Z+,

or, if you prefer,

1+2+---+n:%n(n+1) Vnez".

“How on earth did you come up with this formula in the first
place?” Later ...

2 3 4 5 6 7 8 9 10
3 6 10 15 21 28 36 45 55

Yl |
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Example: Sum of the first n positive integers

Want to show that

or, if you prefer,

1+2+---+n:%n(n+1) Vnez".

“How on earth did you come up with this formula in the first
place?” Later ...

n 1. 2 3 4 5 6 7 8 9 10
Y4 |1 3 6 10 15 21 28 36 45 55
in(n+1)|1 3 6 10 15 21 28 36 45 55

Arthur G. Werschulz 23/32



Dominoesl!

Suppose:
@ You're going to push the first one over.

e If any given domino has fallen down, the next one after it
will also fall down.

Arthur G. Werschulz 24/32



Dominoesl!

Suppose:
@ You're going to push the first one over.

e If any given domino has fallen down, the next one after it
will also fall down.

They’ll all fall down!

Arthur G. Werschulz 24/32



Theorem (First Principle of Mathematical Induction)

Let P(n) be a statement about the positive integer n € Z™*.
Suppose we can prove the following:

e Basis step: P(1) is true.

e Induction step: If P(k) is true for some arbitrary k € Z™,
then P(k + 1) is true.

Then P(n) is true for alln € Z*.

Why?

P(1) is true (basis step).
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then P(k + 1) is true.
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e Induction step: If P(k) is true for some arbitrary k € Z™,
then P(k + 1) is true.
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Why?
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Theorem (First Principle of Mathematical Induction)

Let P(n) be a statement about the positive integer n € Z™.
Suppose we can prove the following:

e Basis step: P(1) is true.

e Induction step: If P(k) is true for some arbitrary k € Z™,
then P(k + 1) is true.

Then P(n) is true for alln € Z*.

Why?

P(1) is true (basis step).

P(1) being true implies P(1 4 1) = P(2) is true (induction step).
P(2) being true implies P(2 + 1) = P(3) is true (induction step).
P(3) being true implies P(3+ 1) = P(4) is true (induction step).
P(4) being true implies P(4 + 1) = P(5) is true (induction step).
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Theorem (First Principle of Mathematical Induction)

Let P(n) be a statement about the positive integer n € Z™.
Suppose we can prove the following:

e Basis step: P(1) is true.

e Induction step: If P(k) is true for some arbitrary k € Z™,
then P(k + 1) is true.

Then P(n) is true for alln € Z*.

Why?

P(1) is true (basis step).

(1) being true implies P(1 4+ 1) = P(2) is true (induction step).
P(2) being true implies P(2 + 1) = P(3) is true (induction step).
P(3) being true implies P(3+ 1) = P(4) is true (induction step).
P(4) being true implies P(4 + 1) = P(5) is true (induction step).
..and soon

P
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Example: Sum of the first n positive integers (cont’d)
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Example: Sum of the first n positive integers (cont’d)

n(n+1) Vnezt

Nl=

j=
j=1

Proof (by induction): For n € Z*, the statement P(n) we're
trying to prove is

Y j=3%n(n+1). (1)
=1
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Example: Sum of the first n positive integers (cont’d)

n(n+1) Vnezt

Nl=

j=
j=1

Proof (by induction): For n € Z*, the statement P(n) we're
trying to prove is

Y j=3%n(n+1). (1)
j=1

Basis step: Let n = 1. Then

ij:ijzl and
j=1 j=1
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Example: Sum of the first n positive integers (cont’d)

n(n+1) Vnezt

Nl=

j=
j=1

Proof (by induction): For n € Z*, the statement P(n) we're
trying to prove is

Y j=3%n(n+1). (1)
=1

Basis step: Let n = 1. Then

n 1
=1 j=1
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Example: Sum of the first n positive integers (cont’d)

n(n+1) Vnezt

Nl=

j=
j=1

Proof (by induction): For n € Z*, the statement P(n) we're
trying to prove is

Y j=3%n(n+1). (1)
j=1

Basis step: Let n = 1. Then
n 1
=1 j=1

So formula (1) is true when n =1, i.e., P(1) is true.

Arthur G. Werschulz 26/32



Induction step: Let k € Z", and suppose that P(k) is true; we
need to show that P(k + 1) is true.
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Induction step: Let k € Z", and suppose that P(k) is true; we
need to show that P(k + 1) is true.
Since P(k) is true, we know that

ZJ = k(k+1)

=1

Arthur G. Werschulz 27/32



Induction step: Let k € Z", and suppose that P(k) is true; we
need to show that P(k + 1) is true.
Since P(k) is true, we know that

i =3k(k+1)
j=1

Using this as a starting point, we want to show that P(k + 1) is
true, i.e., that

M+

:% k+1)((k+1)+1) = 3(k+1)(k +2).
j=1

Arthur G. Werschulz 27/32



Induction step (cont’d): But

2|

Tk(k+1)+(k+1) by the induction hypothesis
(3k+1)(k+1)
3(k+2)(k+1),

as required to prove that P(k + 1) is true.

M+
||

il)—i- k+1)
1

J:

k
k

Arthur G. Werschulz 28/32



Induction step (cont’d): But

by the induction hypothesis

as required to prove that P(k + 1) is true.

Since we have proved the basis step and the induction step, it
follows that P(n) is true foralln € Z+.

Arthur G. Werschulz 28/32



Example: Number of leaves in complete binary tree

Here's a complete binary tree with five levels:
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e Terminology:
e Tree? All edges go from a given level to the next level.
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e Terminology:
e Tree? All edges go from a given level to the next level.
e Binary? No more than two descendants per node.
o Complete? Each node has exactly two descendants.
@ Question: How many nodes branch out from the nth level
of a complete binary tree?

o Get an idea by making a table. Let b, denote the number
of nodes branching out from the nth level. Looking at the
drawing we saw earlier:

n|1 2 3 4 5
b,[2 4 8 16 32

e This suggests that b, = 2".

Arthur G. Werschulz 30/32



For n € Z*, let b,, be the number of nodes branching out from
the nth level of a complete binary tree. Then b, = 2"
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For n € Z*, let b,, be the number of nodes branching out from
the nth level of a complete binary tree. Then b, = 2"

Proof (by induction): For n € Z™, the statement P(n) we're
trying to prove is
b, =2". (2)
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For n € Z*, let b,, be the number of nodes branching out from
the nth level of a complete binary tree. Then b, = 2"

Proof (by induction): For n € Z™, the statement P(n) we're
trying to prove is
b, =2". (2)

Basis step: Let n = 1. Looking at the first level of the binary
tree, it is immediately clear that by = 2. So P(1) is true.

Arthur G. Werschulz 31/32



Induction step: Let k € Z", and suppose that P(k) is true; we
need to show that P(k + 1) is true.

Arthur G. Werschulz 32/32



Induction step: Let k € Z", and suppose that P(k) is true; we
need to show that P(k + 1) is true.
Since P(k) is true, we know that b, = 2k,

Arthur G. Werschulz 32/32
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@ Since we're working with a complete binary tree, each
node at any level branches out to two nodes at the next
level.
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Induction step: Let k € Z", and suppose that P(k) is true; we
need to show that P(k + 1) is true.
Since P(k) is true, we know that b, = 2k,

@ Since we're working with a complete binary tree, each
node at any level branches out to two nodes at the next
level.

@ Each node at level k branches out to two nodes at level
k+1.

@ So by 1 = 2by.
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Induction step: Let k € Z", and suppose that P(k) is true; we
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@ Since we're working with a complete binary tree, each
node at any level branches out to two nodes at the next
level.

@ Each node at level k branches out to two nodes at level

k+1.
@ So by 1 = 2by.
Hence
bk 11 = 2bx
=2.2k (by the induction hypothesis)
_ k1

as required to prove that P(k + 1) is true.

Since we have proved the basis step and the induction step, it
follows that P(n) is true for all n € Z*.
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Hence
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Induction step: Let k € Z", and suppose that P(k) is true; we
need to show that P(k + 1) is true.
Since P(k) is true, we know that b, = 2k,
@ Since we're working with a complete binary tree, each
node at any level branches out to two nodes at the next
level.

@ Each node at level k branches out to two nodes at level

k+1.
@ So by 1 = 2by.
Hence
bk 11 = 2bx
=2.2k (by the induction hypothesis)
_ k1

as required to prove that P(k + 1) is true.

Since we have proved the basis step and the induction step, it
follows that P(n) is true for all n € Z*. O
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