CISC 1400 Discrete Structures Chapter 2 **Sequences**

Arthur G. Werschulz

Fordham University Department of Computer and Information Sciences Copyright © Arthur G. Werschulz, 2019. All rights reserved.

Summer, 2019

- **•** Finding patterns
- **•** Notation
	- **•** Closed form
	- Recursive form
	- Converting between them
- **•** Summations

 \bullet 1, 2, 3, 4, 5,

 $0, 1, 2, 3, 4, 5, 6$

- $0, 1, 2, 3, 4, 5, 6$
- 2, 6, 10, 14, 18,

- $0, 1, 2, 3, 4, 5, 6$
- 2, 6, 10, 14, 18, 22

- $0, 1, 2, 3, 4, 5, 6$
- 2, 6, 10, 14, 18, 22
- \bullet 1, 2, 4, 8, 16,

- $0, 1, 2, 3, 4, 5, 6$
- 2, 6, 10, 14, 18, 22
- \bullet 1, 2, 4, 8, 16, 32

- \bullet 1, 2, 3, 4, 5, 6
- 2, 6, 10, 14, 18, 22
- \bullet 1, 2, 4, 8, 16, 32
- \bullet 1, 3, 6, 10, 15,

- \bullet 1, 2, 3, 4, 5, 6
- 2, 6, 10, 14, 18, 22
- \bullet 1, 2, 4, 8, 16, 32
- \bullet 1, 3, 6, 10, 15, 21

- \bullet 1, 2, 3, 4, 5, 6
- 2, 6, 10, 14, 18, 22
- \bullet 1, 2, 4, 8, 16, 32
- \bullet 1, 3, 6, 10, 15, 21
- \bullet 1, 2, 6, 24, 120,

- \bullet 1, 2, 3, 4, 5, 6
- 2, 6, 10, 14, 18, 22
- \bullet 1, 2, 4, 8, 16, 32
- \bullet 1, 3, 6, 10, 15, 21
- \bullet 1, 2, 6, 24, 120, 720

- \bullet 1, 2, 3, 4, 5, 6
- 2, 6, 10, 14, 18, 22
- \bullet 1, 2, 4, 8, 16, 32
- \bullet 1, 3, 6, 10, 15, 21
- \bullet 1, 2, 6, 24, 120, 720
- \bullet 1, 1, 2, 3, 5, 8, 13,

- \bullet 1, 2, 3, 4, 5, 6
- 2, 6, 10, 14, 18, 22
- \bullet 1, 2, 4, 8, 16, 32
- \bullet 1, 3, 6, 10, 15, 21
- \bullet 1, 2, 6, 24, 120, 720
- \bullet 1, 1, 2, 3, 5, 8, 13, 21
- Each term might be related to previous terms
- Each term might depend on its position number (1st, 2nd, $3rd, \ldots$)
- "Well-known" sequences (even numbers, odd numbers)
- Some (or all) of the above

Can we relate a term to previous terms?

• Second term is 2 more than first term.

Can we relate a term to previous terms?

- Second term is 2 more than first term.
- Third term is 2 more than second term.

Can we relate a term to previous terms?

- Second term is 2 more than first term.
- Third term is 2 more than second term. *. . .*
- Any given term is 2 more than previous term.

• Term at position 1 is 2.

- Term at position 1 is 2.
- Term at position 2 is 4.

- Term at position 1 is 2.
- Term at position 2 is 4.
- Term at position 3 is 6.

- Term at position 1 is 2.
- Term at position 2 is 4.
- Term at position 3 is 6.

. . .

 \bullet Term at position *n* is 2*n*.

- Write term in a sequence as a lower case letter, followed by a subscript denoting position number of the term (e.g., a_1 , b_7 , z_k).
- For the sequence 2, 4, 6, 8, 10, \dots :

• $a_1 =$

- Write term in a sequence as a lower case letter, followed by a subscript denoting position number of the term (e.g., a_1 , b_7 , z_k).
- For the sequence 2, 4, 6, 8, 10, \dots :

• $a_1 = 2$.

- Write term in a sequence as a lower case letter, followed by a subscript denoting position number of the term (e.g., a_1 , b_7 , z_k).
- For the sequence 2, 4, 6, 8, 10, \dots :

$$
\bullet \ \ a_1=2.
$$

$$
\bullet\ a_2 =
$$

- Write term in a sequence as a lower case letter, followed by a subscript denoting position number of the term (e.g., a_1 , b_7 , z_k).
- For the sequence 2, 4, 6, 8, 10, \dots :

\n- $$
a_1 = 2
$$
\n- $a_2 = 4$
\n

- Write term in a sequence as a lower case letter, followed by a subscript denoting position number of the term (e.g., a_1 , b_7 , z_k).
- For the sequence 2, 4, 6, 8, 10, \dots :

•
$$
a_1 = 2
$$
.

- $a_2 = 4$.
- a_n is nth term in the sequence.

- Write term in a sequence as a lower case letter, followed by a subscript denoting position number of the term (e.g., a_1 , b_7 , z_k).
- For the sequence $2, 4, 6, 8, 10, \ldots$:
	- $a_1 = 2$.
	- $a_2 = 4$.
	- a_n is nth term in the sequence.
- What is a_3 ?

- Write term in a sequence as a lower case letter, followed by a subscript denoting position number of the term (e.g., a_1 , b_7 , z_k).
- For the sequence $2, 4, 6, 8, 10, \ldots$:
	- $a_1 = 2$.
	- $a_2 = 4$.
	- a_n is nth term in the sequence.
- What is a_3 ? 6

- Write term in a sequence as a lower case letter, followed by a subscript denoting position number of the term (e.g., a_1 , b_7 , z_k).
- For the sequence $2, 4, 6, 8, 10, \ldots$:
	- $a_1 = 2$.
	- $a_2 = 4$.
	- a_n is nth term in the sequence.
- What is a_3 ? 6
- What is a_5 ?

- Write term in a sequence as a lower case letter, followed by a subscript denoting position number of the term (e.g., a_1 , b_7 , z_k).
- For the sequence $2, 4, 6, 8, 10, \ldots$:
	- $a_1 = 2$.
	- $a_2 = 4$.
	- a_n is nth term in the sequence.
- What is a_3 ? 6
- What is a_5 ? 10

- Write term in a sequence as a lower case letter, followed by a subscript denoting position number of the term (e.g., a_1 , b_7 , z_k).
- For the sequence $2, 4, 6, 8, 10, \ldots$:
	- $a_1 = 2$.
	- $a_2 = 4$.
	- a_n is nth term in the sequence.
- What is a_3 ? 6
- What is a_5 ? 10
- What is $a₆$?

- Write term in a sequence as a lower case letter, followed by a subscript denoting position number of the term (e.g., a_1 , b_7 , z_k).
- For the sequence $2, 4, 6, 8, 10, \ldots$:
	- $a_1 = 2$.
	- $a_2 = 4$.
	- a_n is nth term in the sequence.
- What is a_3 ? 6
- What is a_5 ? 10
- What is $a₆$? 12

- Write term in a sequence as a lower case letter, followed by a subscript denoting position number of the term (e.g., a_1 , b_7 , z_k).
- For the sequence $2, 4, 6, 8, 10, \ldots$:
	- $a_1 = 2$.
	- $a_2 = 4$.
	- a_n is nth term in the sequence.
- What is a_3 ? 6
- What is a_5 ? 10
- What is $a₆$? 12
- What is a_n if $n = 5$?

- Write term in a sequence as a lower case letter, followed by a subscript denoting position number of the term (e.g., a_1 , b_7 , z_k).
- For the sequence $2, 4, 6, 8, 10, \ldots$:
	- $a_1 = 2$.
	- $a_2 = 4$.
	- a_n is nth term in the sequence.
- What is a_3 ? 6
- What is a_5 ? 10
- What is $a₆$? 12
- What is a_n if $n = 5$? 10

- Write term in a sequence as a lower case letter, followed by a subscript denoting position number of the term (e.g., a_1 , b_7 , z_k).
- For the sequence $2, 4, 6, 8, 10, \ldots$:
	- $a_1 = 2$.
	- $a_2 = 4$.
	- a_n is nth term in the sequence.
- What is a_3 ? 6
- What is a_5 ? 10
- What is $a₆$? 12
- What is a_n if $n = 5$? 10
- What is a_{n+1} if $n = 5$?
Mathematical notation

- Write term in a sequence as a lower case letter, followed by a subscript denoting position number of the term (e.g., a_1 , b_7 , z_k).
- For the sequence $2, 4, 6, 8, 10, \ldots$:
	- $a_1 = 2$.
	- $a_2 = 4$.
	- a_n is nth term in the sequence.
- What is a_3 ? 6
- What is a_5 ? 10
- What is $a₆$? 12
- What is a_n if $n = 5$? 10
- What is a_{n+1} if $n = 5$? 12

• Recursive formula for a sequence: each term is described in relation to previous term(s). For example:

$$
a_n=2a_{n-1}
$$

• Recursive formula for a sequence: each term is described in relation to previous term(s). For example:

$$
a_n=2a_{n-1}
$$

$$
a_3=2a_2
$$

• Recursive formula for a sequence: each term is described in relation to previous term(s). For example:

$$
a_n=2a_{n-1}
$$

$$
a_3 = 2a_2 = 2 \cdot (2 \, a_1)
$$

• Recursive formula for a sequence: each term is described in relation to previous term(s). For example:

$$
a_n=2a_{n-1}
$$

$$
a_3 = 2a_2 = 2 \cdot (2a_1) = 4a_1
$$

• Recursive formula for a sequence: each term is described in relation to previous term(s). For example:

$$
a_n=2a_{n-1}
$$

$$
a_3 = 2a_2 = 2 \cdot (2a_1) = 4a_1 = 4 \cdot (2a_0)
$$

• Recursive formula for a sequence: each term is described in relation to previous term(s). For example:

$$
a_n=2a_{n-1}
$$

$$
a_3 = 2a_2 = 2 \cdot (2a_1) = 4a_1 = 4 \cdot (2a_0) = 8a_0
$$

So

• Recursive formula for a sequence: each term is described in relation to previous term(s). For example:

$$
a_n=2a_{n-1}
$$

$$
a_3 = 2a_2 = 2 \cdot (2a_1) = 4a_1 = 4 \cdot (2a_0) = 8a_0
$$

= 8 \cdot (2a₋₁)

So

• Recursive formula for a sequence: each term is described in relation to previous term(s). For example:

$$
a_n=2a_{n-1}
$$

$$
a_3 = 2a_2 = 2 \cdot (2a_1) = 4a_1 = 4 \cdot (2a_0) = 8a_0
$$

= 8 \cdot (2a_{-1}) = 16a_{-1} = ...

• Recursive formula for a sequence: each term is described in relation to previous term(s). For example:

$$
a_n=2a_{n-1}
$$

So
\n
$$
a_3 = 2a_2 = 2 \cdot (2a_1) = 4a_1 = 4 \cdot (2a_0) = 8a_0
$$

\n $= 8 \cdot (2a_{-1}) = 16a_{-1} = ...$

• Problem: Need a starting point (initial condition) such as

$$
a_1=1
$$

• Recursive formula for a sequence: each term is described in relation to previous term(s). For example:

$$
a_n=2a_{n-1}
$$

So
\n
$$
a_3 = 2a_2 = 2 \cdot (2a_1) = 4a_1 = 4 \cdot (2a_0) = 8a_0
$$

\n $= 8 \cdot (2a_{-1}) = 16a_{-1} = ...$

• Problem: Need a starting point (initial condition) such as

$$
a_1 = 1
$$

• So let's try
$$
a_n = 2a_{n-1} \quad \text{for } n \ge 2
$$

$$
a_1 = 1
$$

Example:

$$
a_3 = 2a_2 = 2 \cdot (2a_1) = 4a_1 = 4 \cdot 1 = 4
$$

1*,*1*,*2*,*3*,*5*,*8*,*13*,...*

- 1*,*1*,*2*,*3*,*5*,*8*,*13*,...*
- Recursive formula:

$$
a_n = a_{n-1} + a_{n-2}
$$
 for $n \ge 3$
\n $a_2 = 1$
\n $a_1 = 1$

- 1*,*1*,*2*,*3*,*5*,*8*,*13*,...*
- Recursive formula:

$$
a_n = a_{n-1} + a_{n-2}
$$
 for $n \ge 3$
\n $a_2 = 1$
\n $a_1 = 1$

• What's a_{10} ? Top-down solution:

$$
a_{10}=a_9+a_8\\
$$

- 1*,*1*,*2*,*3*,*5*,*8*,*13*,...*
- Recursive formula:

$$
a_n = a_{n-1} + a_{n-2}
$$
 for $n \ge 3$
\n $a_2 = 1$
\n $a_1 = 1$

• What's a_{10} ? Top-down solution:

$$
a_{10} = a_9 + a_8 = (a_8 + a_7) + (a_7 + a_6)
$$

- 1*,*1*,*2*,*3*,*5*,*8*,*13*,...*
- Recursive formula:

$$
a_n = a_{n-1} + a_{n-2}
$$
 for $n \ge 3$
\n $a_2 = 1$
\n $a_1 = 1$

• What's a_{10} ? Top-down solution:

$$
a_{10} = a_9 + a_8 = (a_8 + a_7) + (a_7 + a_6) = a_8 + 2a_7 + a_6...
$$

- 1*,*1*,*2*,*3*,*5*,*8*,*13*,...*
- Recursive formula:

$$
a_n = a_{n-1} + a_{n-2}
$$
 for $n \ge 3$
\n $a_2 = 1$
\n $a_1 = 1$

• What's a_{10} ? Top-down solution:

$$
a_{10} = a_9 + a_8 = (a_8 + a_7) + (a_7 + a_6) = a_8 + 2a_7 + a_6...
$$

Too hard!

- 1*,*1*,*2*,*3*,*5*,*8*,*13*,...*
- Recursive formula:

$$
a_n = a_{n-1} + a_{n-2}
$$
 for $n \ge 3$
\n $a_2 = 1$
\n $a_1 = 1$

• What's a_{10} ? Top-down solution:

$$
a_{10} = a_9 + a_8 = (a_8 + a_7) + (a_7 + a_6) = a_8 + 2a_7 + a_6...
$$

Too hard!

n 1 2 3 4 5 6 7 8 9 10 an

- 1*,*1*,*2*,*3*,*5*,*8*,*13*,...*
- Recursive formula:

$$
a_n = a_{n-1} + a_{n-2}
$$
 for $n \ge 3$
\n $a_2 = 1$
\n $a_1 = 1$

• What's a_{10} ? Top-down solution:

$$
a_{10} = a_9 + a_8 = (a_8 + a_7) + (a_7 + a_6) = a_8 + 2a_7 + a_6...
$$

Too hard!

n 1 2 3 4 5 6 7 8 9 10 aⁿ 1

- 1*,*1*,*2*,*3*,*5*,*8*,*13*,...*
- Recursive formula:

$$
a_n = a_{n-1} + a_{n-2}
$$
 for $n \ge 3$
\n $a_2 = 1$
\n $a_1 = 1$

• What's a_{10} ? Top-down solution:

$$
a_{10} = a_9 + a_8 = (a_8 + a_7) + (a_7 + a_6) = a_8 + 2a_7 + a_6...
$$

Too hard!

n 1 2 3 4 5 6 7 8 9 10 aⁿ 1 1

- 1*,*1*,*2*,*3*,*5*,*8*,*13*,...*
- **e** Recursive formula:

$$
a_n = a_{n-1} + a_{n-2}
$$
 for $n \ge 3$
\n $a_2 = 1$
\n $a_1 = 1$

• What's a_{10} ? Top-down solution:

$$
a_{10} = a_9 + a_8 = (a_8 + a_7) + (a_7 + a_6) = a_8 + 2a_7 + a_6...
$$

Too hard!

n 1 2 3 4 5 6 7 8 9 10 aⁿ 1 1 2

- 1*,*1*,*2*,*3*,*5*,*8*,*13*,...*
- **e** Recursive formula:

$$
a_n = a_{n-1} + a_{n-2}
$$
 for $n \ge 3$
\n $a_2 = 1$
\n $a_1 = 1$

• What's a_{10} ? Top-down solution:

$$
a_{10} = a_9 + a_8 = (a_8 + a_7) + (a_7 + a_6) = a_8 + 2a_7 + a_6...
$$

Too hard!

n 1 2 3 4 5 6 7 8 9 10 aⁿ 1 1 2 3

- 1*,*1*,*2*,*3*,*5*,*8*,*13*,...*
- Recursive formula:

$$
a_n = a_{n-1} + a_{n-2}
$$
 for $n \ge 3$
\n $a_2 = 1$
\n $a_1 = 1$

• What's a_{10} ? Top-down solution:

$$
a_{10} = a_9 + a_8 = (a_8 + a_7) + (a_7 + a_6) = a_8 + 2a_7 + a_6...
$$

Too hard!

n 1 2 3 4 5 6 7 8 9 10 aⁿ 1 1 2 3 5

- 1*,*1*,*2*,*3*,*5*,*8*,*13*,...*
- Recursive formula:

$$
a_n = a_{n-1} + a_{n-2}
$$
 for $n \ge 3$
\n $a_2 = 1$
\n $a_1 = 1$

• What's a_{10} ? Top-down solution:

$$
a_{10} = a_9 + a_8 = (a_8 + a_7) + (a_7 + a_6) = a_8 + 2a_7 + a_6...
$$

Too hard!

n 1 2 3 4 5 6 7 8 9 10 aⁿ 1 1 2 3 5 8

- 1*,*1*,*2*,*3*,*5*,*8*,*13*,...*
- Recursive formula:

$$
a_n = a_{n-1} + a_{n-2}
$$
 for $n \ge 3$
\n $a_2 = 1$
\n $a_1 = 1$

• What's a_{10} ? Top-down solution:

$$
a_{10} = a_9 + a_8 = (a_8 + a_7) + (a_7 + a_6) = a_8 + 2a_7 + a_6...
$$

Too hard!

n 1 2 3 4 5 6 7 8 9 10 aⁿ 1 1 2 3 5 8 13

- 1*,*1*,*2*,*3*,*5*,*8*,*13*,...*
- Recursive formula:

$$
a_n = a_{n-1} + a_{n-2}
$$
 for $n \ge 3$
\n $a_2 = 1$
\n $a_1 = 1$

• What's a_{10} ? Top-down solution:

$$
a_{10} = a_9 + a_8 = (a_8 + a_7) + (a_7 + a_6) = a_8 + 2a_7 + a_6...
$$

Too hard!

n 1 2 3 4 5 6 7 8 9 10 aⁿ 1 1 2 3 5 8 13 21

- 1*,*1*,*2*,*3*,*5*,*8*,*13*,...*
- Recursive formula:

$$
a_n = a_{n-1} + a_{n-2}
$$
 for $n \ge 3$
\n $a_2 = 1$
\n $a_1 = 1$

• What's a_{10} ? Top-down solution:

$$
a_{10} = a_9 + a_8 = (a_8 + a_7) + (a_7 + a_6) = a_8 + 2a_7 + a_6...
$$

Too hard!

n 1 2 3 4 5 6 7 8 9 10 aⁿ 1 1 2 3 5 8 13 21 34

- 1*,*1*,*2*,*3*,*5*,*8*,*13*,...*
- Recursive formula:

$$
a_n = a_{n-1} + a_{n-2}
$$
 for $n \ge 3$
\n $a_2 = 1$
\n $a_1 = 1$

• What's a_{10} ? Top-down solution:

$$
a_{10} = a_9 + a_8 = (a_8 + a_7) + (a_7 + a_6) = a_8 + 2a_7 + a_6...
$$

Too hard!

n 1 2 3 4 5 6 7 8 9 10 aⁿ 1 1 2 3 5 8 13 21 34 55

Recursive formula corresponds to "recursive function" in a programming language.

Recursion

- Recursive formula corresponds to "recursive function" in a programming language.
- **•** Fibonacci formula

$$
a_n = a_{n-1} + a_{n-2}
$$
 for $n \ge 3$
\n $a_2 = 1$
\n $a_1 = 1$

Recursion

- Recursive formula corresponds to "recursive function" in a programming language.
- **•** Fibonacci formula

$$
a_n = a_{n-1} + a_{n-2}
$$
 for $n \ge 3$
\n $a_2 = 1$
\n $a_1 = 1$

• Recursive function

```
def fib(n):
if n == 1 or n == 2:
    return 1
else:
    return fib(n-1) + fib(n-2)
```
 \bullet 2, 4, 6, 8, 10, ...

 \bullet 2, 4, 6, 8, 10, ...

$$
a_n = a_{n-1} + 2 \qquad \text{for } n \ge 2
$$

$$
a_1 = 2
$$

 \bullet 2, 4, 6, 8, 10, ...

$$
a_n = a_{n-1} + 2 \qquad \text{for } n \ge 2
$$

$$
a_1 = 2
$$

 \bullet 1, 3, 6, 10, 15, ...

 \bullet 2, 4, 6, 8, 10, ...

$$
a_n = a_{n-1} + 2 \qquad \text{for } n \ge 2
$$

$$
a_1 = 2
$$

 \bullet 1, 3, 6, 10, 15, ...

$$
a_n = a_{n-1} + n \qquad \text{for } n \ge 2
$$

$$
a_1 = 1
$$

 \bullet 2, 4, 6, 8, 10, ...

$$
a_n = a_{n-1} + 2 \qquad \text{for } n \ge 2
$$

$$
a_1 = 2
$$

 \bullet 1, 3, 6, 10, 15, ...

$$
a_n = a_{n-1} + n \qquad \text{for } n \ge 2
$$

$$
a_1 = 1
$$

 \bullet 2, 2, 4, 6, 10, 16, ...
Exercise: Find recursive formula

 \bullet 2, 4, 6, 8, 10, ...

$$
a_n = a_{n-1} + 2 \qquad \text{for } n \ge 2
$$

$$
a_1 = 2
$$

 \bullet 1, 3, 6, 10, 15, ...

$$
a_n = a_{n-1} + n \qquad \text{for } n \ge 2
$$

$$
a_1 = 1
$$

 \bullet 2, 2, 4, 6, 10, 16, ...

$$
a_n = a_{n-1} + a_{n-2}
$$
 for $n \ge 3$
\n $a_2 = 2$
\n $a_1 = 2$

• Write each term in relation to its position

• Example:
$$
2, 4, 6, 8, 10, \ldots
$$

$$
\bullet \ \ a_1 = 2 =
$$

- Write each term in relation to its position
- Example: 2, 4, 6, 8, 10, ...

$$
a_1 = 2 = 2 \cdot 1
$$

$$
a_2 = 4 =
$$

- Write each term in relation to its position
- Example: 2, 4, 6, 8, 10, ...

$$
\bullet \ \ a_1 = 2 = 2 \cdot 1
$$

$$
a_2=4=2\cdot 2
$$

$$
a_3 = 6 =
$$

- Write each term in relation to its position
- Example: 2, 4, 6, 8, 10, ...

$$
\bullet \ \ a_1 = 2 = 2 \cdot 1
$$

$$
a_2=4=2\cdot 2
$$

$$
a_3 = 6 = 2 \cdot 3
$$

• More generally, $a_n =$

- Write each term in relation to its position
- Example: 2, 4, 6, 8, 10, ...

$$
\bullet \ \ a_1 = 2 = 2 \cdot 1
$$

$$
a_2=4=2\cdot 2
$$

$$
a_3 = 6 = 2 \cdot 3
$$

• More generally,
$$
a_n = 2n
$$
.

Find the closed formulas

 \bullet 1, 3, 5, 7, 9, ...

Find the closed formulas

$$
• 1, 3, 5, 7, 9, \ldots a_n = 2n - 1
$$

- \bullet 1, 3, 5, 7, 9, ... $a_n = 2n 1$
- \bullet 3, 6, 9, 12, 15, ...
- \bullet 1, 3, 5, 7, 9, ... $a_n = 2n 1$
- \bullet 3, 6, 9, 12, 15, ... $b_n = 3n$
- \bullet 1, 3, 5, 7, 9, ... $a_n = 2n 1$
- \bullet 3, 6, 9, 12, 15, ... $b_n = 3n$
- \bullet 8, 13, 18, 23, 28, ...
- \bullet 1, 3, 5, 7, 9, ... $a_n = 2n 1$
- \bullet 3, 6, 9, 12, 15, ... $b_n = 3n$
- \bullet 8, 13, 18, 23, 28, ... $c_n = 5n + 3$
- \bullet 1, 3, 5, 7, 9, ... $a_n = 2n 1$
- \bullet 3, 6, 9, 12, 15, ... $b_n = 3n$
- \bullet 8, 13, 18, 23, 28, ... $c_n = 5n + 3$
- \bullet 3, 9, 27, 81, 243, ...
- \bullet 1, 3, 5, 7, 9, ... $a_n = 2n 1$ \bullet 3, 6, 9, 12, 15, ... $b_n = 3n$ • 8, 13, 18, 23, 28, $\ldots c_n = 5n + 3$
- $3, 9, 27, 81, 243, \ldots d_n = 3^n$

• Recursive formula

- \bullet It's often easier to find a recursive formula for a given sequence.
- It's often harder to evaluate a given term.

• Recursive formula

- It's often easier to find a recursive formula for a given sequence.
- It's often harder to evaluate a given term.
- Closed formula
	- It's often harder to find a closed formula for a given sequence.
	- It's often easier to evaluate a given term.
- **Write out a few terms.**
- See if you can figure out how a given term relates to previous terms.
- Example: $r_n = 3n + 4$.
- **.** Write out a few terms.
- See if you can figure out how a given term relates to previous terms.

• Example:
$$
r_n = 3n + 4
$$
.
\n
$$
\begin{array}{c|cccccc}\nn & 1 & 2 & 3 & 4 & 5 & \dots \\
\hline\nr_n & 7 & 10 & 13 & 16 & 19 & \dots\n\end{array}
$$

- **Write out a few terms.**
- See if you can figure out how a given term relates to previous terms.

• Example:
$$
r_n = 3n + 4
$$
.
\n $n \mid 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad ...$

$$
\begin{array}{c|cccccc}\n\ldots & 7 & 10 & 13 & 16 & 19 & \ldots \\
\hline\n\end{array}
$$

We find

$$
r_n = r_{n-1} + 3 \qquad \text{for } n \ge 2
$$

$$
r_1 = 7
$$

Closed formula ⇒ recursive formula

Can also use algebraic manipulation. Let's try

$$
r_n=3n+4
$$

again.

• Initial condition is easiest—substitute $n = 1$ into closed form:

Closed formula ⇒ recursive formula

Can also use algebraic manipulation. Let's try

$$
r_n=3n+4
$$

again.

• Initial condition is easiest—substitute $n = 1$ into closed form:

$$
r_1=3\cdot 1+4=7
$$

Closed formula \Rightarrow recursive formula

Can also use algebraic manipulation. Let's try

$$
r_n=3n+4
$$

again.

• Initial condition is easiest—substitute $n = 1$ into closed form:

$$
r_1=3\cdot 1+4=7
$$

• Recursive formula: Try to describe r_n in terms of r_{n-1} :

Closed formula \Rightarrow recursive formula

Can also use algebraic manipulation. Let's try

$$
r_n=3n+4
$$

again.

• Initial condition is easiest—substitute $n = 1$ into closed form:

$$
r_1=3\cdot 1+4=7
$$

• Recursive formula: Try to describe r_n in terms of r_{n-1} :

$$
r_n = 3n + 4
$$

$$
r_{n-1} = 3(n-1) + 4 = 3n - 3 + 4 = 3n + 1
$$

Closed formula ⇒ recursive formula

Can also use algebraic manipulation. Let's try

$$
r_n=3n+4
$$

again.

• Initial condition is easiest—substitute $n = 1$ into closed form:

$$
r_1=3\cdot 1+4=7
$$

• Recursive formula: Try to describe r_n in terms of r_{n-1} :

$$
r_n = 3n + 4
$$

$$
r_{n-1} = 3(n-1) + 4 = 3n - 3 + 4 = 3n + 1
$$

So

$$
r_n - r_{n-1} = (3n + 4) - (3n + 1) = 3,
$$

i.e.,

$$
r_n = r_{n-1} + 3
$$

$$
s_n=2^n-2
$$

• Initial condition:

$$
s_n=2^n-2
$$

• Initial condition:
$$
s_1 = 2^1 - 2 = 0
$$
.

$$
s_n=2^n-2
$$

• Initial condition:
$$
s_1 = 2^1 - 2 = 0
$$
.

• Recursive formula:

$$
s_n=2^n-2
$$

- Initial condition: $s_1 = 2^1 2 = 0$.
- Recursive formula: We have

$$
s_n = 2^n - 2
$$

and

$$
s_{n-1} = 2^{n-1} - 2
$$

$$
s_n=2^n-2
$$

- Initial condition: $s_1 = 2^1 2 = 0$.
- Recursive formula: We have

$$
s_n = 2^n - 2
$$

and

$$
s_{n-1} = 2^{n-1} - 2
$$

$$
s_n=2^n-2
$$

$$
s_n=2^n-2
$$

- Initial condition: $s_1 = 2^1 2 = 0$.
- Recursive formula: We have

$$
s_n = 2^n - 2
$$

and

$$
s_{n-1} = 2^{n-1} - 2
$$

$$
s_n = 2^n - 2 = 2 \cdot 2^{n-1} - 2
$$

$$
s_n=2^n-2
$$

- Initial condition: $s_1 = 2^1 2 = 0$.
- Recursive formula: We have

$$
s_n = 2^n - 2
$$

and

$$
s_{n-1} = 2^{n-1} - 2
$$

$$
s_n = 2^n - 2 = 2 \cdot 2^{n-1} - 2 = 2 \cdot 2^{n-1} - 4 + 2
$$

$$
s_n=2^n-2
$$

- Initial condition: $s_1 = 2^1 2 = 0$.
- Recursive formula: We have

$$
s_n = 2^n - 2
$$

and

$$
s_{n-1} = 2^{n-1} - 2
$$

$$
s_n = 2^n - 2 = 2 \cdot 2^{n-1} - 2 = 2 \cdot 2^{n-1} - 4 + 2
$$

= 2 \cdot (2^{n-1} - 2) + 2

$$
s_n=2^n-2
$$

- Initial condition: $s_1 = 2^1 2 = 0$.
- Recursive formula: We have

$$
s_n = 2^n - 2
$$

and

$$
s_{n-1} = 2^{n-1} - 2
$$

$$
s_n = 2^n - 2 = 2 \cdot 2^{n-1} - 2 = 2 \cdot 2^{n-1} - 4 + 2
$$

= 2 \cdot (2^{n-1} - 2) + 2
= 2s_{n-1} + 2

Find the recursive formulas for the following sequences: • $a_n = 2n + 7$

Find the recursive formulas for the following sequences:

• $a_n = 2n + 7$

$$
\bullet \ \ a_1=9
$$

•
$$
a_n = a_{n-1} + 2
$$
 for $n \ge 2$.

Find the recursive formulas for the following sequences:

\n- $$
a_n = 2n + 7
$$
\n- $a_1 = 9$
\n- $a_n = a_{n-1} + 2$ for $n \geq 2$.
\n- $b_n = 2^n - 1$
\n
Find the recursive formulas for the following sequences:

• $a_n = 2n + 7$ • $a_1 = 9$ • $a_n = a_{n-1} + 2$ for $n \ge 2$. $b_n = 2^n - 1$ • $b_1 = 1$ • $b_n = 2b_{n-1} + 1$ for $n \ge 2$.

$$
\sum_{i=1}^n a_i =
$$

$$
\sum_{i=1}^{n} a_i = a_1 + a_2 + \dots + a_n
$$

$$
\sum_{i=1}^{n} a_i = a_1 + a_2 + \dots + a_n
$$

Parts of speech?

 \bullet Large $\Sigma:$ "summation"

$$
\sum_{i=1}^{n} a_i = a_1 + a_2 + \dots + a_n
$$

- Large Σ : "summation"
- \bullet i = 1 at bottom: We want to start summation at term #1 of the sequence.

$$
\sum_{i=1}^{n} a_i = a_1 + a_2 + \dots + a_n
$$

- Large Σ : "summation"
- \bullet i = 1 at bottom: We want to start summation at term #1 of the sequence.
- \bullet n at the top: We want to stop summation at the nth term of the sequence

$$
\sum_{i=1}^{n} a_i = a_1 + a_2 + \dots + a_n
$$

- Large Σ : "summation"
- \bullet i = 1 at bottom: We want to start summation at term #1 of the sequence.
- \bullet n at the top: We want to stop summation at the nth term of the sequence
- Portion to the right of the $\Sigma_{i=1}^n$: Closed form of sequence we want to sum.

Examples of Σ -notation:

 $\sqrt{\frac{5}{}}$ $i=1$ $(3i + 7)$

$$
\sum_{i=1}^{5} (3i + 7) = (3 \cdot 1 + 7) + (3 \cdot 2 + 7) + (3 \cdot 3 + 7) + (3 \cdot 4 + 7) + (3 \cdot 5 + 7) = 10 + 13 + 16 + 19 + 22 = 80
$$

Examples of Σ -notation:

 $j=2$

$$
\sum_{i=1}^{5} (3i + 7) = (3 \cdot 1 + 7) + (3 \cdot 2 + 7) + (3 \cdot 3 + 7) + (3 \cdot 4 + 7)
$$

$$
+ (3 \cdot 5 + 7)
$$

$$
= 10 + 13 + 16 + 19 + 22 = 80
$$

$$
\sum_{i=1}^{6} (j^2 - 2)
$$

$$
\sum_{i=1}^{5} (3i + 7) = (3 \cdot 1 + 7) + (3 \cdot 2 + 7) + (3 \cdot 3 + 7) + (3 \cdot 4 + 7)
$$

+ (3 \cdot 5 + 7)
= 10 + 13 + 16 + 19 + 22 = 80

$$
\sum_{j=2}^{6} (j^2 - 2) = (2^2 - 2) + (3^2 - 2) + (4^2 - 2) + (5^2 - 2) + (6^2 - 2)
$$

= 2 + 7 + 14 + 23 + 34 = 80

Note: Parentheses are important!

$$
\sum_{i=1}^{5} 3i + 7 = (3 \cdot 1 + 3 \cdot 2 + 3 \cdot 3 + 3 \cdot 4 + 3 \cdot 5) + 7 = 52
$$

$3 + 7 + 11 + 15 + 19$

$$
3+7+11+15+19=\sum_{i=1}^{5}(4i-1)
$$

$$
3+7+11+15+19 = \sum_{i=1}^{5} (4i-1)
$$

$$
= \sum_{j=1}^{5} (4j-1)
$$

 $0 + 3 + 8 + 15 + 24$

$$
3+7+11+15+19 = \sum_{i=1}^{5} (4i-1)
$$

=
$$
\sum_{j=1}^{5} (4j-1)
$$

$$
0+3+8+15+24 = \sum_{k=1}^{5} (k^2-1)
$$

Prove $P(1)$

Prove $P(1)$ Prove P(2)

Prove $P(1)$ Prove P(2) Prove P(3)

Prove $P(1)$ Prove P(2) Prove P(3) Prove P(4)

```
Prove P(1)Prove P(2)
Prove P(3)
Prove P(4)
    .
    .
    .
Prove P(100000000)
```

```
Prove P(1)
Prove P(2)
Prove P(3)
Prove P(4)
     .
     .
     .
```
Prove $P(100000000)$

But this doesn't guarantee that $P(n)$ is true for all n; maybe P(100000001) is false!!

Want to show that

$$
\sum_{j=1}^n j = \frac{1}{2}n(n+1) \qquad \forall n \in \mathbb{Z}^+,
$$

or, if you prefer,

$$
1+2+\cdots+n=\tfrac{1}{2}n(n+1)\qquad\forall\,n\in\mathbb{Z}^+.
$$

 $\langle \hat{\bm{z}} \rangle$ "How on earth did you come up with this formula in the first place?" Later . . .

n	1	2	3	4	5	6	7	8	9	10
$\sum_{j=1}^{n} j$	1	3	6	10	15	21	28	36	45	55

Want to show that

$$
\sum_{j=1}^n j = \frac{1}{2}n(n+1) \qquad \forall n \in \mathbb{Z}^+,
$$

or, if you prefer,

$$
1+2+\cdots+n=\tfrac{1}{2}n(n+1)\qquad\forall\,n\in\mathbb{Z}^+.
$$

 $\langle \hat{\bm{z}} \rangle$ "How on earth did you come up with this formula in the first place?" Later . . .

n	1	2	3	4	5	6	7	8	9	10
$\sum_{j=1}^{n} j$	1	3	6	10	15	21	28	36	45	55
$\frac{1}{2}n(n+1)$	1	3	6	10	15	21	28	36	45	55

Dominoes!!

Suppose:

- You're going to push the first one over.
- If any given domino has fallen down, the next one after it will also fall down.

Dominoes!!

Suppose:

- You're going to push the first one over.
- If any given domino has fallen down, the next one after it will also fall down.

They'll all fall down!

Let $P(n)$ be a statement about the positive integer $n \in \mathbb{Z}^+$. Suppose we can prove the following:

- Basis step: $P(1)$ is true.
- Induction step: If $P(k)$ is true for some arbitrary $k \in \mathbb{Z}^+$, then $P(k + 1)$ is true.

Then $P(n)$ is true for all $n \in \mathbb{Z}^+$.

Why?

 $P(1)$ is true (basis step).

Let P(n) be a statement about the positive integer $n \in \mathbb{Z}^+$. Suppose we can prove the following:

- Basis step: $P(1)$ is true.
- Induction step: If $P(k)$ is true for some arbitrary $k \in \mathbb{Z}^+$, then $P(k + 1)$ is true.

Then $P(n)$ is true for all $n \in \mathbb{Z}^+$.

Why?

 $P(1)$ is true (basis step).

 $P(1)$ being true implies $P(1 + 1) = P(2)$ is true (induction step).

Let P(n) be a statement about the positive integer $n \in \mathbb{Z}^+$. Suppose we can prove the following:

- Basis step: $P(1)$ is true.
- Induction step: If $P(k)$ is true for some arbitrary $k \in \mathbb{Z}^+$, then $P(k + 1)$ is true.

Then $P(n)$ is true for all $n \in \mathbb{Z}^+$.

Why?

 $P(1)$ is true (basis step).

 $P(1)$ being true implies $P(1 + 1) = P(2)$ is true (induction step).

 $P(2)$ being true implies $P(2+1) = P(3)$ is true (induction step).

Let P(n) be a statement about the positive integer $n \in \mathbb{Z}^+$. Suppose we can prove the following:

- Basis step: $P(1)$ is true.
- Induction step: If $P(k)$ is true for some arbitrary $k \in \mathbb{Z}^+$, then $P(k + 1)$ is true.

Then P(n) is true for all $n \in \mathbb{Z}^+$.

Why?

 $P(1)$ is true (basis step).

 $P(1)$ being true implies $P(1 + 1) = P(2)$ is true (induction step).

 $P(2)$ being true implies $P(2+1) = P(3)$ is true (induction step).

 $P(3)$ being true implies $P(3+1) = P(4)$ is true (induction step).

Let $P(n)$ be a statement about the positive integer $n \in \mathbb{Z}^+$. Suppose we can prove the following:

- Basis step: $P(1)$ is true.
- Induction step: If $P(k)$ is true for some arbitrary $k \in \mathbb{Z}^+$, then $P(k + 1)$ is true.

Then P(n) is true for all $n \in \mathbb{Z}^+$.

Why?

 $P(1)$ is true (basis step).

 $P(1)$ being true implies $P(1 + 1) = P(2)$ is true (induction step). $P(2)$ being true implies $P(2+1) = P(3)$ is true (induction step). $P(3)$ being true implies $P(3+1) = P(4)$ is true (induction step). $P(4)$ being true implies $P(4+1) = P(5)$ is true (induction step).

Let P(n) be a statement about the positive integer $n \in \mathbb{Z}^+$. Suppose we can prove the following:

- Basis step: $P(1)$ is true.
- Induction step: If $P(k)$ is true for some arbitrary $k \in \mathbb{Z}^+$, then $P(k + 1)$ is true.

Then P(n) is true for all $n \in \mathbb{Z}^+$.

Why?

 $P(1)$ is true (basis step).

 $P(1)$ being true implies $P(1 + 1) = P(2)$ is true (induction step). $P(2)$ being true implies $P(2+1) = P(3)$ is true (induction step). $P(3)$ being true implies $P(3+1) = P(4)$ is true (induction step). $P(4)$ being true implies $P(4+1) = P(5)$ is true (induction step). ... and so on

Theorem

$$
\sum_{j=1}^n j = \frac{1}{2}n(n+1) \qquad \forall n \in \mathbb{Z}^+
$$

Theorem

$$
\sum_{j=1}^n j = \frac{1}{2}n(n+1) \qquad \forall n \in \mathbb{Z}^+
$$

Proof (by induction): For $n \in \mathbb{Z}^+$, the statement $P(n)$ we're trying to prove is

$$
\sum_{j=1}^{n} j = \frac{1}{2} n(n+1).
$$
 (1)

Theorem

$$
\sum_{j=1}^n j = \frac{1}{2}n(n+1) \qquad \forall n \in \mathbb{Z}^+
$$

Proof (by induction): For $n \in \mathbb{Z}^+$, the statement $P(n)$ we're trying to prove is

$$
\sum_{j=1}^{n} j = \frac{1}{2} n(n+1).
$$
 (1)

Basis step: Let $n = 1$. Then

$$
\sum_{j=1}^{n} j = \sum_{j=1}^{1} j = 1
$$
 and

Theorem

$$
\sum_{j=1}^n j = \frac{1}{2}n(n+1) \qquad \forall n \in \mathbb{Z}^+
$$

Proof (by induction): For $n \in \mathbb{Z}^+$, the statement $P(n)$ we're trying to prove is

$$
\sum_{j=1}^{n} j = \frac{1}{2} n(n+1).
$$
 (1)

Basis step: Let $n = 1$. Then

$$
\sum_{j=1}^{n} j = \sum_{j=1}^{1} j = 1 \quad \text{and} \quad \frac{1}{2}n(n+1) = \frac{1}{2} \cdot 1 \cdot (1+1) = 1.
$$
Example: Sum of the first n positive integers (cont'd)

Theorem

$$
\sum_{j=1}^n j = \frac{1}{2}n(n+1) \qquad \forall n \in \mathbb{Z}^+
$$

Proof (by induction): For $n \in \mathbb{Z}^+$, the statement $P(n)$ we're trying to prove is

$$
\sum_{j=1}^{n} j = \frac{1}{2} n(n+1).
$$
 (1)

Basis step: Let $n = 1$. Then

$$
\sum_{j=1}^{n} j = \sum_{j=1}^{1} j = 1 \quad \text{and} \quad \frac{1}{2}n(n+1) = \frac{1}{2} \cdot 1 \cdot (1+1) = 1.
$$

So formula [\(1\)](#page-140-0) is true when $n = 1$, i.e., $P(1)$ is true.

Induction step: Let $k \in \mathbb{Z}^+$, and suppose that $P(k)$ is true; we need to show that $P(k + 1)$ is true.

$$
\sum_{j=1}^k j = \frac{1}{2}k(k+1)
$$

$$
\sum_{j=1}^k j = \frac{1}{2}k(k+1)
$$

Using this as a starting point, we want to show that $P(k + 1)$ is true, i.e., that

$$
\sum_{j=1}^{k+1} j = \frac{1}{2}(k+1)(k+1)+1 = \frac{1}{2}(k+1)(k+2).
$$

Induction step (cont'd): But

$$
\sum_{j=1}^{k+1} j = \left(\sum_{j=1}^{k} j\right) + (k+1)
$$

= $\frac{1}{2}k(k+1) + (k+1)$
= $\left(\frac{1}{2}k+1\right)(k+1)$
= $\frac{1}{2}(k+2)(k+1)$,

) by the induction hypothesis

as required to prove that $P(k + 1)$ is true.

Induction step (cont'd): But

$$
\sum_{j=1}^{k+1} j = \left(\sum_{j=1}^{k} j\right) + (k+1)
$$

= $\frac{1}{2}k(k+1) + (k+1)$
= $\left(\frac{1}{2}k+1\right)(k+1)$
= $\frac{1}{2}(k+2)(k+1)$,

by the induction hypothesis

as required to prove that $P(k + 1)$ is true.

Since we have proved the basis step and the induction step, it follows that $P(n)$ is true for all $n \in \mathbb{Z}^+$.

Example: Number of leaves in complete binary tree

Here's a complete binary tree with five levels:

• Terminology:

Tree? All edges go from a given level to the next level.

• Terminology:

- Tree? All edges go from a given level to the next level.
- Binary? No more than two descendants per node.

• Terminology:

- Tree? All edges go from a given level to the next level.
- Binary? No more than two descendants per node.
- Complete? Each node has exactly two descendants.
- **•** Terminology:
	- Tree? All edges go from a given level to the next level.
	- Binary? No more than two descendants per node.
	- Complete? Each node has exactly two descendants.
- Question: How many nodes branch out from the nth level of a complete binary tree?
- Get an idea by making a table. Let b_n denote the number of nodes branching out from the nth level. Looking at the drawing we saw earlier:

n 1 2 3 4 5 bⁿ 2 4 8 16 32

This suggests that $b_n = 2^n$.

Theorem

For $n \in \mathbb{Z}^+$, let b_n be the number of nodes branching out from the nth level of a complete binary tree. Then $b_n = 2^n$

Theorem

For $n \in \mathbb{Z}^+$, let b_n be the number of nodes branching out from the nth level of a complete binary tree. Then $b_n = 2^n$

Proof (by induction): For $n \in \mathbb{Z}^+$, the statement $P(n)$ we're trying to prove is

$$
b_n = 2^n. \tag{2}
$$

Theorem

For $n \in \mathbb{Z}^+$, let b_n be the number of nodes branching out from the nth level of a complete binary tree. Then $b_n = 2^n$

Proof (by induction): For $n \in \mathbb{Z}^+$, the statement $P(n)$ we're trying to prove is

$$
b_n = 2^n. \tag{2}
$$

Basis step: Let $n = 1$. Looking at the first level of the binary tree, it is immediately clear that $b_1 = 2$. So $P(1)$ is true.

Induction step: Let $k \in \mathbb{Z}^+$, and suppose that $P(k)$ is true; we need to show that $P(k + 1)$ is true.

• Since we're working with a complete binary tree, each node at any level branches out to two nodes at the next level.

- Since we're working with a complete binary tree, each node at any level branches out to two nodes at the next level.
- Each node at level k branches out to two nodes at level $k+1$.

- Since we're working with a complete binary tree, each node at any level branches out to two nodes at the next level.
- Each node at level k branches out to two nodes at level $k+1$.
- So $b_{k+1} = 2b_k$.

- Since we're working with a complete binary tree, each node at any level branches out to two nodes at the next level.
- **Each node at level k branches out to two nodes at level** $k+1$.

• So
$$
b_{k+1} = 2b_k
$$
.

Hence

$$
b_{k+1} = 2b_k
$$

= 2 \cdot 2^k (by the induction hypothesis)
= 2^{k+1},

as required to prove that $P(k + 1)$ is true.

Since we have proved the basis step and the induction step, it follows that $P(n)$ is true for all $n \in \mathbb{Z}^+$.

- Since we're working with a complete binary tree, each node at any level branches out to two nodes at the next level.
- **Each node at level k branches out to two nodes at level** $k+1$.

• So
$$
b_{k+1} = 2b_k
$$
.

Hence

$$
b_{k+1} = 2b_k
$$

$$
= 2^{k+1}
$$

as required to prove that $P(k + 1)$ is true.

,

Since we have proved the basis step and the induction step, it follows that $P(n)$ is true for all $n \in \mathbb{Z}^+$.

- Since we're working with a complete binary tree, each node at any level branches out to two nodes at the next level.
- Each node at level k branches out to two nodes at level $k+1$.

• So
$$
b_{k+1} = 2b_k
$$
.

Hence

$$
b_{k+1} = 2b_k
$$

= 2 \cdot 2^k (by the induction hypothesis)
= 2^{k+1},

as required to prove that $P(k + 1)$ is true.

- Since we're working with a complete binary tree, each node at any level branches out to two nodes at the next level.
- **Each node at level k branches out to two nodes at level** $k+1$.

• So
$$
b_{k+1} = 2b_k
$$
.

Hence

$$
b_{k+1} = 2b_k
$$

= 2 \cdot 2^k (by the induction hypothesis)
= 2^{k+1},

as required to prove that $P(k + 1)$ is true.

Since we have proved the basis step and the induction step, it follows that $P(n)$ is true for all $n \in \mathbb{Z}^+$.